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ABSTRACT

The detection of underwater acoustic signals by simple auto- and cross-

correlation receivers in the presence of inn-normal, as well as normal back-

ground noise is examined on the basis of signal-to-noise ratios calculated

A from a generalized deflection criterion. Particular attention is devoted to

the effects of impulse noise and mixtures of impulse and normal noise on

system performance. Comparisons between system behavior vis-AL-vis the

two types of interference are made. For impulse noise equivalent in spectral

distribution and average intensity to a gauss noise background it is found

that the output signal-to-noise (power) ratios are related by the canonical

expression

(S/N)2
(S/N)I= 1 0 < U < 1,I

whereA (> 0) is the "impulse factor" and p is the fraction (in average intensity)

of the total noise background that is attributable to normal noise. Impulse

noise always degrades system performance vis-a-vis normal noise in the

autocorrelation reception of stochastic signals, characteristic of applications

where passive receiving methods must be used. This degradation can be con-

siderable [ 0(lOdb or more)] if the noise is highly impulsive (largei\J- and

if large values of (S/N) 2 t (> 0 db) are required (for high accuracy of decision).

On the other hand, when coherent (i. e. deterministic)signals are employed, so

that cross-correlation reception is possible, the degradation may be reduced

essentially to zero (i. e..A--0) under realizable conditions of operation. It is

observed for impulsive, as well as normal noise backgrounds, that cross-

correlation receivers are linear in their dependence on signal-to-noise ratio,
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i.e. (S/N)o (S/N)n if sufficiently strong injected signals are employed.out in
The analysis is carried out largely in canonical form, so that the general

results for (S/N) can be applied to other, special types of non-normal
Out

noise backgrounds. Specific relations are included, along with a detailed

summary of the principal results-showing the dependence of (S/N)z on
2 1out

(S/N). , filtering, delay, noise and signal spectra, etc. for weak and

strong inputs, little cr heavy post-correlation smoothing and for gauss as

well as for impulse noise.
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GLOSSARY OF PRINCIPAL SYMBOLS

A0 1, A0 2  peak amplitudes of sinusoidal signals

A, AI A = impulse amplitudes

A(12)(T, x) = fourth-order moment of nonnormal noise
4

2 2 2
a 0 , a 0 1 , a = input signal-to-noise power ratios

S= reciprocal of average impulse duration

F( I 2)2 = mean-square fluctuation

Af = width of equivalent rectangular filtere

f frequency

7y impulse noise "density"

0fo = filter and impulse structure factors

hT h weighting functions of smoothing filter

I'
1 12, 1 12 impulse noise terms

K K K(2
s) NiN etc. = auto and cross variance functions of signals and noise

k , , k(12)ks k N o k S etc. = normalized auto and cross variance functions of signals
and noise

k( 12 ),k (12) normalized auto and cross-variance function of the basic
u 2u 2 2impulses u l , u 2 ;ul, u2

T = integral of the smoothing filter's weighting function

LI(71) = impulse noise factor

V



Mz(t, T) = correlator output

S= fraction of background noise intensity attributable
to normal noise

N(t) = background noise wave

4'N,4 , 4y = mean intensities of N, x, y

PT(t) = autocorrelation functions of truncated smoothing filter

Wx (xy)P1 2  p Py) etc.= normalized autovariance and cross variance functions
of x, x and y, etc.

S, S 'SZ = signal waveforms

(S/N) = output (S/N) power ratio for impulse noise

(S/N)G = output (S/N) power ratio for gauss noise

2 2
(S/N) Out , (S/N) in output and input (S/N) power ratios

T = smoothing interval

= correlation delay

u, u1 , u2  = normalized basic impulse waveforms

, W = angular frequencies

x, y = input waveforms to the correlators

Z(t, 7) = output of the correlator's multiplier

vi



1. INTRODUCTION

Although normal, or gaussian noise processes are common sources

j of interference in such communication problems as signal detection and

signal extraction, background noise of non-gaussian character also occurs

frequently, particularly in underwater acoustics. The aim of the present

paper is to study the effects on signal detection of rini.normal background

noise accompanying possible acoustic signals. The receivers here are

postulated to be simple correlation detectors, employing either auto-or

cross-correlation techniques. The criterion of performance is given in

terms of a suitably defined output signal-to-noise ratio and its dependence

,on input signal-to-noise ratio, integration time, and post-detection

smoothing. A more comprehensive statistical approach, which makes use

of generalized likelihood ratios and general n-th order distributions of the

received noise and signal process , does not yet appear to be technically

feasible with ran-normal statistics. * However, by restricting the criterion
2to the partially descriptive concept of signal-to-noise ratio , instead of

attempting the optimal and statistically complete description based on decision

theory methods, 1, and by choosing simple correlators involving at most

1
Middleton, D., "An Introduction to Statistical Communication Theory",

McGraw-Hill, New York (1960), Part IV and especially Chapter 19.
*

Under the more restrictive conditions of independent data samples and
long observation times, however, some progress has been made in the more
general statistical approach, for correlation devices and certain classes of
optimum (e.g. likelihood) systems la.

laWolff, S. S., J. B. Thomas, and T. R. Williams, The Polarity-Conci-

dence Correlator: A Nonparametric Detection Device, IRE Trans. in Informa-
tion Theory, Vol. IT-8, 5-9, Jan. (1962), see also ref. 4 therein.

2 Ref. 1, Secs. (5.3-3,4).
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quadratic operations on the input data, we can construct an essentially complete

theory at this level of complexity, since at most fourth-order moments of the

input signal and noise processes are required. An essential task of the present

study, accordingly, is to obtain these fourth-order moments for a variety of

appropriate noise and signal models and to evaluate the resulting output signal-

to-noise ratios. Following this, we seek a comparison with similar systems
*

operating against otherwise equivalent normal noise backgrounds. In this way

we obtain a direct, quantitative measure of the change in expected performance

due to the nongaussian character of the interference. Of particular interest

here are both weak and strong-signal performance.

The principal components of our model may be briefly summarized; the

key features are (1), a deflection criterion specifying output signal-to-noise

ratios; (2), simple (i. e. unweighted) auto-and cross-correlators; (3), finite-

time smoothing of the output of the correlator, with suitable low-pass filters;

and (4), non-normaa, as well as normal noise and signal processes; deterministic

signals are also considered. Although the general formulation is made initially

in terms of nonstationary processes, specific examples are evaluated for the

stationary situation in some detail. Previous work has either focused on the

correlation aspects, with and without final smoothing and with normal noise

backgrounds3, 4, 5, 6 or has considered the statistics of the output of more general,

Equivalent in intensity spectra and mean total intensities; see Eq. (4. 4) et seq.
3Fano, R. M. , "Signal-to-Noise Ratio in Correlation Detectors", Tech.

Rept. No. 186, Feb. 19 (1951) MIT Research Laboratory of Electronics.
4 Faran, J. J. and R. Hills, "Correlators for Signal Reception", Tech.

Mem. No. 27, Sept. 15 (1952), Acoustics Research Laboratory(Harvard Univ.)
5Faran, J.J. and R. Hills, "The Application of Correlation Techniques to

Acoustic Receiving Systems", Tech. Memo No. 28, Nov. 1 (1952), Acoustics
Research Laboratory, Div. Appl. Sci., Harvard Univ., Cambridge, Mass. (Sec.
5 for multiple element arrays. )

6 Lee, Y. W., T. P. Cheatham and J. B. Wiesner, "Application of Correlation
Analysis to the Detection of Periodic Signals in Noise, Proc IRE 38, 1165(1950).

2



zero-memory (and zero delay) nonlinear devices with non-guassian inputs,

or has concentrated on the fourth-moment statistics of various types of non-normal
.8noise . None to date has combined the various elements [(1) - (4) above], in

particular, the combination of signals and rn-normal noise backgrounds in

correlation detectors as presented here, including the role of finite-time
9averages. Another new feature of the present effort is the development of

canonical results for system performance, results and relations that are in-

variant of specific spectral properties, the random or deterministic natures

of signal and noise, and in many cases, even of the specific statistics of

the signal and noise processes themselves.

We shall consider in various combinations the following varieties of

signals and noise:

Noise Backgrounds:

(1) gaussian noise, as a standard of reference;

(2) low "density" and arbitrary "density" impulse noise (Poisson
statistics);*

(3) mixtures, in arbitrary proportions of (1) and (2);

(4) nearly normal noise (as a special case of (3) ).

7 Mullen, J. A., and D. Middleton, The Rectification of Non-gaussian

Noise, Q. App. Math 15, 395 (1958).
8Magness, J.A., Spectral Response of a Quadratic Device to Non-gaussian

Noise, 3. App. Phys, 25, 1357 (1954).
9Davenport, W. B., R. A. Johnson and D. Middleton, Statistical Errors

in Measurements on Random Time Functions, J. App. Phys. 23, 377( 1952);
Also, Sec. 16. 1-1,2,3, ref. 1.

Section 112., Ref. 1.
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Input Signals:

(1) simple sinusoids;

(2) stochastic signals, e. g., normal and impulse processes

The present analysis is restricted to single-element arrays whose per-

formance may be regarded as quantdtatively typical of more involved array

structures. The effects of multiple-element arrays5 ' 10 and optimum

linear filtering before correlation, as well as other types of rm-normal noise

and signal processes, are reserved for a subsequent paper.

Although our treatment is specifically directed to problems of acoustic

signal detection, the results may be carred over directly, or with obvious

modifications, to analogous situations involving electromagnetic propagation,

e. g., radio, radar, etc. Section 2 following presents a general formulation

of correlation detectionm with the calculation of output signal-to-noise ratios2

(S/N) based on a deflection criterion; Section 3 gives canonical expressions
out

2
for (S/N) ou t , while Section 4 applies these results to (a), gauss noise back-

grounds, (b), impulse noise; (c), mixtures of normal and impulsive noise

backgrounds. Section 5 considers limiting forms of the impulse factor ,(T),

while Section 6 is devoted to the canonical limits of the correlation detectors'

outputs for weak and strong signals subject to the various background noises

of Section 4. A summary and discussion of the principal results in Section 7

completes the paper. Special relations, needed in the body of the work, are

derived in the Appendixes.

10Heaps, H. S., General Theory for the Synthesis of Hydrophone Arrays,

J. Acous. Soc. Amer. 32 , 356 (1960). This paper also contains an extensive
bibliography of array studies.

Sec. 16.3, ref. 1.
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2. FORMULATION

The general structure of the correlation receivers assumed here is

shown in Figure 1. The output of A, directly following the zero-memory

multiplier isA
Z (t, r) = x(t) y (t -r)( . )I

where x and y are the inputs at a, a' (after possible linear filtering, not

however explicitly considered at this point). Specifically, we have

Ix(t) = S( 1 )(t) + NG)It); ylM = sl()(t) + Nl0,

() (2 +1 y()=2))() 22

in which N( I  N may be correlated, as may be S S however without

any real loss of applicability we assume that S and N are statistically independent

(at least through their fourth-order moments). When switch 1 is closed, with

I I

L W DELAY

I .y = 0

L------------- j
Figure 1. Simple Correlation detectors

switch 2 open, we have a cross-correlator, while when switch 1 is open and 2

is shut, we have an auto-correlator, with y(t-T) = x(t-T). The output at B at

-5-
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time t = T, when a decision is to be made, is simply*

T+

Mz(T, r) = h(To) x (T-T' ) y(T-'o -) dro. (2. 3)

As we shall see below, it is the appropriate first and second moments of Mz

that are needed in our criterion of system performance.

This criterion of performance is a general form of the deflection criterion
here specifically the ratio of the mean shift in receiver output Mz when a signal

is present vis-a-vis that of noise alone, to the rms fluctuation of this output.

The former represents a more realistic version of output signal than normallyI 3,4
used in the past , albeit still a somewhat arbitrary and certainly incomplete

statistical description, while the latter is a measure of the interfering back-

ground against which the desired signal is perceived. We have accordingly for

readouts at time t = T (after smoothing starts at t = 0, cf. (2. 3)).

2 [ z (,) - M (t T) 2

(Lut -F ( 12 ) (T, T) 2
Z S+N (nxn)+(sxn)

with

F(12) (T )2 2 -M (T 2T7) 2 (25aFz (T,7)S+N (nxn) + (sxn) MzT S+N " Mz S+N (nxn)+lsxn))

Sec. 16. 1-1, of ref. 1.

See Sec. 5.3-4 of ref. 1.
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the mean-square background noise fluctuation. From (2. 3) in (2. 4), (2. 5a)

we see that

T+

M 2 N (T,'h7+ h(T 2) x(TyT 1 xy(.T) ) ddd (2. 5b)

z ++

0-

where for Mz N' etc. we simply setS (1),S ( ) = 0 inxandy, (2.2)

above . From (2. 5b, c) in (2. 4) (2. 5a) is at once clear that fourth-order

moments of the input processes (x, y) play a critical and determining role

in the present theory.

We remark here that the background fluctuation effect in (2. 4) is., for

detection, usually dependent on both the (nxn) and (sxn) noise products

generated in the nonlinear operation of multiplication. Note that this de-

finition of (S/N) is an extension of the earlier deflection criterion of
out 11

Lawson and Uhlenbeck , in that the (sxn) terms are here included as well.

The earlier criterion is more suited, for example, to pulsed signals when

one visually compares the S+N state to that of noise alone, the two being

juxtaposed, as on a cathode-ray oscilloscope display. The present definition

(2. 4) is better suited to the distinguishing of a signal in noise, and, of course,

*Unless otherwise indicated, the superscript bars denote the sta tical

average over all random components and parameters of x and y; (-) denotes

the average over noise (N) alone, while (- S) similarly indicates the average

over S.

See Ref. 1, sec. 5.1-2.
1 1Lawson, J. L. and G. E. Uhlenbeck, "Threshold Signals", McGraw-

Hill (New York), MIT Radiation Laboratory Series No. 24, 1950, sections 7. 3,

7. 4. See also sec. 5. 3-4 of Ref. 1 for an example of (2. 4).

- 7-



its measurement. The two criteria yield the same results in threshold

(weak-input signal) operation, as expected since then the (sxn) contribution

can be neglected vis-a-vis the dominant (nxn) components, but yield quite

different results for strong signals, where the (sxn) terms now predominate.

The simpler version may, of course, be obtained directly from our more

general results simply by dropping the (sxn) contributions therein, cf.

Sec. 6 following.

Besides the auto- and cross-correlation receivers described above

and shown in Figure 1, two other forms of correlation reception may also

commonly occur. These are (i), an auto-correlation, two-channel receiver

(switch 2 open and switch 1 closed), with the same signal in each input and

independent noises in each channel, so that x and y, Eq. (2. 2),. become in this

instance

x(t) = S(t) + N (t); y(t) = S(t) + N (t), (2. 6)

with N (
, N statistically independent. The second system, (ii), involves

cross-correlation reception (switch 2 open and switch I closed, once more)
(1) (2)

like that discussed above, but now with N , N statistically independent

(at least through the fourth-order moments for the present analysis), and,

of course, with S( 1 ) and S ( 2) related so that Eq. (Z.2) applies here again. As

noted later in Secs. 3 and 4, systems (i) and (ii) are independent of the particu-

lar character of the higher (fourth or more) order statistics of the background

noise, and so apart from this fact, are not of particular interest to us in the

present paper, which is principally concerned with the important cases of sta-

tistical~L related ncise backgrounds (N ( 1 ) = N(2) in autocorrelation, N ( 1) N ( 2 )

j N ( 1 ) N( 2 ) , etc. in cross-correlation) and the effects of the non-normality of

such noise.

-8-



3. CANONICAL FORMS OF (S2N)'-

Our first task, accordingly, is to evaluate the numerator and demoninator

of (2. 4) for general noise and signal processes. Let us begin with the fourth-

order moment

xlx y 3 y4  (S (1) + N (() ) (S (2) + N(2) (3. 1)
1234 1 1 2 2 3 3 4 4

where N1 = N(t 1 ), etc. and S and N are assumed to be statistically independent.

The development of (3. 1) is

( ) ( ) () (2) 2
I x y~4= N N 2 N N 4 + S 1 )N(2) N N(2) NSl 1)N()N2

1 2 4 1 2 3 3

____ ___ _ __ ____ ___ ___
(+ (1) ) ~ () (2) (1)~ (1) (2

+ 3 " N 1N2 N4 14 24N(2)

+ (1 () 2)  (2) N() (2) ( ) 1() ,(1) (2) " (1)'()

) ( ) N( N 2 ) + (2) () .(l)2()

2 1 4 2 4 1 3 3 4 12

1 2 3 4 1 3 4 2 1 2 4 3

+ (1)o(2)o(2) 1)}
_234 "

+ , (1.(l) (2) )(2) (3.2)
2 3 4-



The first term of (3. 2) represents (nxn) components, the next three, in

{ }, are (sxn) modulation products, while the last term denotes the (sxs)

products. Now whenN= 0 and NiNjN k = 0 and/or S SiSk = 0 A3. 2)

reduces to

-(=)N (1)N (2)N (2) (1) K (Z) + K( 12 ) (12) K(12) K (12)

1 23y4  1 2 3-12 N-34 S-12 N-24 S-14N-23

+ (12) (12) (12) (12) (2) (1)+ KS-23%-1 4 +K S-Z 4 N-13+ KS- 3 4 K N-12

+ 2 3 4' (3.3I
where K ( I ) , KG1 ) etc., are the various auto-and cross-variance functions of

(1 N
S( I ) N ( , etc., e.g.,

K(-1 S((t)S() (t2) K(I) (t); K(12) = N(1)(t )N(t 4)= 1 42) etc.
=2 (t 1 ? YN- 4

(3.4a)

which for stationary processes reduce to

(_) K ()2) (t' t (21)etc.)(t.t(21(t-12K It -t 1) ETNZ 4 ~~ 4 = (t 4-t 2 ), t. (.b

The assumption that N = 0 and NiNjN k = 0 is not restrictive for most applications;

often, also, S.i = SiS Sk = 0, for narrow-band signals or more general signals

without dc components, which is enough to insure that (3. 2) reduces to (3. 3).

Note the convention in the ordering of the subscription on t in K S, KN-
(3. 46): first number on t refers to the first component (S or N), etc.

- 10-



The signal-to-noise ratio (2. 4) can now be put into canonical form,

independent of the specific statistics of signal and noise. For the general

non-stationary cases (with N 0, etc., cf. (3. 3) we may write

2 T+ 2

(~ot ~ h(T )K -1 (T, T 1 T-r-T 1 d7 1 ) FZ~~ +x (3. 5)
S out : 1- h~l -2 1 r)1 Z >(nxn)+(sxn)

where from (3. 3), (3. 4a), we have for the mean-square background noise

fluctuation

|__T+(12)2 1 h11hT) A42(l 4 K2)(t t32

F Z  ...WT, ,
z (nxn)+(sxn) 10-1

0-

+ [K(I)(t, (2) (1 2) (12)+ SiI

( t2 ) )K (t, t4 )+K() (t 3 , t 4 )K 1 (tl t ( d d

)S N 1 1 x

(3.6)

with t I = T - TI; t 2 = T - r2 ; t 3 = T - T - T1; t 4 = T-T-T 2 , and

A(2) (tl,..., t4)N = N) (t2)NM2(t3)NM (t4). (3. 6b)

(An expression analogous to (3. 6b) for the fourth-order signal (sxs) term is

given by A(12(t, ... , t4 )S , with N replaced by S in (3. 6b).

- 4-



In many applications we can regard the component noise and signal

processes as essentially stationary for the obser vation and smoothing

times used. Then (3. 5) - (3. 6) simplify considerably. To see this, we first

let

T+

T- S h(T°) dTo  (3. 7a)

00

PT(X) 0 h T (u) hT(u+x) du hT(u) = h(u), 0 < t < T+; = 0 elsewhere

(3. 7b)

o, 1xi > T

and 00

*40s PT(x) dx = (3. 70| -cc

The quantity PT is the auto-correlation function of the final smoothing filter

cf. Figure 1, for the interval (0-, T+). Then our expressions (3. 5), (3. 6)

for (S/N)2 ut reduce in these stationary cases to

(2 K ) (T) 2  F (3.8)
Sut (nxn) + (sxn)

See Ref. 1, sec. 3.3-1.

- 12-



where now

F (x) A(12)1.,X - K(12) (T)2 dx
z~ - 0 PTx A4 N N(xn

+ PT()K(x) t () + K (x)K N(x) + K (T+x)K N (T-;x)

+ K ( 2 ) T-) (l 2) +X) di}xn (3.9)
S N-Ig(sOxn) '

The first term once more represents the (nxn) noise products, while the second

represents the (sxn) noise modulation components, arising from the intermixing

4
~~of signal and noise in the course of multiplication. The fourth-order termA )

is specifically

A(1 2 (T,x)N = ( (/ A 2 (X, T) (3.10)

with an analogous expression for A(2) (T, x)5 on replacing N by S. We remark

again that (3. 3), (3. 6a) and (3. 9) are derived under the assumption of vanishing

signal and noise means and third moments. However, if N 0, and if

S = SiS k = 0, then we may still use (3. 3), (3. 6a), (3.9) but with KN replaced

by MNP the second-moment function of N, e.g. M N_1Z = KN_ 1 2 +N1 " N, etc.

If S has not vanished, and neither do the third moments of N and S, the complete

expression (3. 2) must be employed in the calculation of F (12)2 , as is the casez
generally when the first and third moments of S and N jointly are not zero.

-13 -



For correlation reception of the types (i), (ii) described at the end

of section 2, we find directly that Eq. (3. 10) gives now

(12) (, = NlN() (2) Nl)(1T)N( 1)(T+x) KlxK), .A 4  (T' X)N (N)N (x) N (xKN (x), (3.11)

"( ( ) --- S( )  S( 2)  K(12)(T ,fo h su ewhile K S  (T) KS(T), since = S = S, and =() 0, from the assumed

independence here of the background noise processes. The output noise term,

(12)2
F Fz , in (3. 8), (3.9) becomes specifically

0o

F (12)2 - W () 1 ()K (2 ) () + K() [K(1 )(x) K(2-)( dx
-0 L (nxn)

(3. 12)

From (3. 11) it is immediately clear that only second-order moments of signal and

noise are now involved in determining (S/N) , (3. 8), unlike (SIN) 2 for the

correlation receivers principally considered in this paper.

I

- 13a -
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4. OUTPUT SIGNAL-TO-NOISE RATIO FOR GAUSS AND IMPULSE

NOISE AND SIGNAL PROCESSES

Let us examine (S/N) for the specific cases of gaussian and
Out

impulsive noise backgrounds, and also for various deterministic and

stochastic signals. Since only the correlation function of the signal appears

in (3. 8), (3. 9), we can still treat (S/N) 2 canonically as far as the signal
Out (12)

is concerned, but because of the fourth-order noise term (A 4 _) appearing

in the mean-square fluctuation we must now consider the statistical charac-

ter of the background noise in more detail. We begin with normal noise,

which is a natural standard against which to compare system behavior with

non-normal input processes. We find directly that (for stationary processes)

Iy NorS = q, / (x) (y) + (xy) (xy)+ (xy) (xy)(
XlX ZY3Y4 *x y \P12 P34 P13 P24 P2 3  PI4 (4.1)

gaus sI
where x= y = 0 and

2 2(x) -/2 (xy) -I 2
x = x 2 ; by = y 2; P12 x ; p1 3 = xlY3 / y, etc., and

(xy) = (yx) = P(xy) (t4Ia)

ij = ji i-t1(4. l a)

See Eq. 7. 29a of Ref. 1.

- 14-



Consequently, we have

A l4 (7 N 2) (T) =a s K N (+X)N (7-x) +K (x)K x). (4.2)

For non-normal processes, however, we cannot expect the fourth-order
moments to factor like (4. 1) for gauss processes. For the non-normal noise
considered specifically here, namely impulse or Poisson noise, we obtain

r from Appendix I

(1~2) (K1 2)Z imp2) (12)
(T )N -KN ()2im 112 TX)+KN (X) (-)(1) ( ) , _(,4.3)

+ KN (x) % (x)}ip

where

00

I (T, X) (A12y (A2 f) u (T +r)U (T+T+X)U T)(Tx)d K3a
12 rx 1 2 (1 )u 1~ 0x dT (4 2a-Co

in which 1 is the reciprocal of the average duration of a typical impulse and

y is the impulse "density" = (av. number of impulses/sec) x (mean duration

of a typical impulse). Here u1 , u2 represent two, possibly different classes

of basic, normalized impulse waveforms which may or may not be generated

by a common stochastic mechanism, while A 1--, etc., are suitably nor-

malized impulse amplitudes, which may or may not be random. (See Appendix

I for details..) It is assumed again that the first and third-order moments of

Nim p vanish also. In particular, the normalizations on A 1 etc. used here are such
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that A 0 (Y0 ), st t). 1 ) as T-loo, since as1,2 sothatK imp N gauss

122
-.othis Poisson process becomes normal z , and lima I1 ( x)- 0,

jaccordingly, cf. (4.3a).

Next, let us use the model employing normal noise backgrounds as

our reference against which to compare the effects of other non-normal

noises. For this we set the spectrum and intensity of the latter equal toI *
that of the reference gauss process, e. g.

K () -, = ()a ; KN ())" = % 1l ('T)gauss ' etc., (4.4)K (7mp=rN gauss' imp K

and this is achieved physically by choosing for the fundamental mechanism

of the standard gauss noise the same basic impulses as in the impulse (e. g.

, Poisson) noise model, except that uy --.o now. Comparing (4. 2) and (4. 3)
gaus s

subject to (4. 4). shows us at once that 12 (7, x) represents the effect (peculiar

to the impulse noise model) on the critical fourth- order moment when

standardized to the gauss for comparison. Accordingly, (3. 9) can be written

go
F(12)2 = F(12 )2 1 +( T, x) dx, (4.5)
FZ Zim + PT~x)l~)1

mp gauss -00

1 2 Middleton, D., On The Theory of Random Noise- Phenomenlogical

Models I, II, J. App. Phys. 22, 1143, 1153, 1326 (1951). See also sections
11. 2-2, 3 of ref. 1.

• M~( 12)(,~mFor non-vanishing noice dc, but S = SiS Sk = 0 we have M 2 (T). =

M (T) gauss, etc. cf. remarks following eq. (3. 10).
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where

00

F (12 )2  (12) (2)(xZ jTIx N rx) N (T-x) +K N (xKN W d
gauss a e r o

00

^r(l)() ( ) (1)+ S PT(x) xN (4.7-00

((12) 122

(T~x) x,( (.)

K S (r+x) K N 2 (,r-x) +K (T-X)% (r2 x)J (sxn) x (46

and where the term containing 1 1 in (4. 5) represents (nxn) noise products.
With the help of (3. 8) and

(T)~ PT W I 1 2 (T, X) dx (4.7)

-- 17

we can now express (SIN) 2as a function of (SIN) 2 Substitutingout-imp out-gauss
(4 7) into (4 5) and (4 5) into (3. 8), remembering that I 1(7)gas 0 (cf.

above), (and using Eq. A. 1-8 also), we have directly

S 2(S/N) 2out-G (4.8)
(N)out-I 

2 "_()(I)
' A~12 7)(IN out -G

-17-



in which

(12)(1) 1 (12) (7) X2 K(12) 2
"Z ~ T K ('r)

2 2
-2 -2 (12) -2 AA2

01 02kS (7)

1 2

go 00

P T ( Wdx U( +7) U(X+7+X)Uz(Z.)U 2 (X+x) dX00I-o -00 (4.9)

-00 00 00

P(x xS u?"(Xd X u 2(X) dX

whreaJ ~12 P'2,a 1() N 2

where a/ a2 are input signal-to-noise (power)

ratios; k(12) (T) is the normalized (cross-correlation) function of S( and S( 2 )

with delay 7, viz:

SSS S 5()(

kJlZ(7) = K(2()/ K (0)K ( '  0;K(2() (I()()0) 4 a

for these stationary processes. The bars over u I, u 2 in (4. 3a) and (4. 9)

indicate statistical averages over possible random parameters in the normalized

waveforms of the basic impulses. Here 0 K Y S. o; note that when the pulse

"density" y becomes infinite (the case of gauss noise), (S/N) = (S/N)u
out-I 1 out-G'

as required, since then (7)'-0 Observe, also that for fixedN 2 ,

- 18 -



A (12)(T)I becomes infinite as 7->O, i. e. as the pulse density is decreased,

individual pulse strength is increased in order to maintain N 2 at a fixed

value (/ 0) . For our Poisson impulse noise model it can furthermore be

shown (cf. Appendx II) that A( 12 )(7) I is always positive (or zero); (we

recall, also, that u = 0 here; there is no dc component in these impulses).
2 2 (12)

Figure 2 shows (S/N) ut-I vs. (S/N) outG for various values of . 1 ; a

Idiscussion is given in Section 7 following.

Sometimes a more appropriate model of the background interference

is one that combines both the gaussian and impulsive noise mechanisms.

We now use our preceeding results to compare the performance of these

simple correlator systems when a mixture of this type appears, with systems

operating against normal noise alone. From (4. 5), (4. 7) and (4. 9) we have

IF(12)2 p ( 1 2 ) 2  + X 2 K0 2 ) ( T) 2 (7)(" (4. 1Oa)

imp gaus s

Now setting M equal to the fraction of total background that is normal, we can

write

12)2! ( 2 )2  (12)2lZ)I = (l-1) F (  + M F 0 < /A _ . (4. 1Ob)
iI+G Z imp Z gauss

Equation (4. 10b) defines A quantitatively in terms of the mean-square back-

ground intensities. ) From (4. 10) in (4. 11) we get

T K 2 A (12) (4.11)

+G gauss
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and so Eq. (4. 8) now takes the more general form for mixtures:

sSN -G (4. 12)

(~out(I+G) (1- 12 ~ou~+) 1 + (I-/A)- -1)(T) I(S/N) out G

which shows, not unexpectedly, that "diluting" the impulse noise background

with normal noise reduces the effect of the impulsive noise vis-k-vis normal

noise alone. Figure 2 shows this explicitly.

Finally, there remains the calculation of explicit results for the second-

and fourth-order signal terms, the former appearing in (S/N) ut , Eqs. (2.5),

(3.8) and the latter appearing in the fluctuating background under certain condi-

tions (not considered further here). We present a few specific results in

the stationary regime:

Sinusoidal Signal: S( I ) = A01 cos w t; S( 2  A Cos (W t + J,)'p fixed. (4.13)
01 oA02 o 0o2o

A01A02 ( 4

K = 2 CoS (Wo+ o) 01(4.14)

and

S(I) S I() S(2)S() = 01 A0 Cs Wo(tl+t2t3"t4"2 t/Wo
A1 { o 1 23 4 0

+ Cos o (t -t +t 3-t 4)+coswo(t -t 2 -t 3 +t 4 ) (4. 15)

which becomes from (3. 10) adapted to signals, as indicated:
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__ _ _A__ _ 2 A2

A ( 12) (T-, X)S= S(2)(O)S() WS(1) (T)S(1) (T+X) A0 1 A0 [cos 2w 2o 2 ( o
14 8s 080 0

(4.15a)

A1 '1' 
2 A 2

A02) (T,x) - K(12T) 01802 [cos 2w x + ZsinW ,sin oj (4.16)
1 14 S 8 0 0

which is independent of T when i4. = 0, + 7r, ± 2, ... , etc. With a gaussian0

signal, A 124)(T, X) is given by K (12) (T+x) K( 1 2 )(T-x)+K ( ) iK(2)ix,x1s S% SxS S S S ,

while for impulsive noise signals (4. 3) applies with S replacing N.

We remark, also, that for the correlation receivers of types (i), (ii),

(cf. end of sec. 2 above) where the background noise is assumed independent

between the two input channels, there is no distinction between impulse and gauss

noise backgrounds on the basis of signal-to-noise ratio performance, when each

has the same mean intensity and spectrum, as is postulated throughout this study.

This follows at once from (3. 11). Accordingly, the systems of chief interest to

us here are those of the main body of the text, wherein the background noise

exhibits the fourth-moment behavior (4. 3a), etc., leading to (4.9), et seq.
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5. LIMITING FORMS OF THE IMPULSE FACTOR .A. (1))

In what follows (cf. secs. 6, 7) we shall need to consider various

limiting forms of the "impulse factor" J~j(l)(T), Eq. (4.9). The two

limiting cases of chief interest are governed (apart from the effect of

"impulsiveness" as such" by the degree of smoothing or filtering achieved

by the final integrating filter in our simple auto-or-cross-correlators, cf.

Figure 1. We distinguish here the opposite situations of (1) heavy smoothing,

where a narrow low-pass filter is used, and (2) no smoothing, where the

integrating filter is essentially very wide vis-a-vis its input. We find

explicitly that for heavy smoothing (3. 7b) simplifies to

PT(x) - PT(0) + XP'T(0) + ... !_ PT(O) (5. la)

and for no smoothing (3. 7b) becomes

00

PT(x) 1= 6 (x-0), with pT(0) == 2fe, (5. ib)
-00

where Af is the width of the equivalent rectangular filter (cf. p. 167,e

Eq. (3. 99), ref. 1). Also, for no smoothing hT(u) = 6(u-0); X T= 1 and

(3. 7c) still applies. Accordingly, Eq. (4. 9) assumes the specialized forms:

Heavy Smoothing:

(a) auto-correlator:
k4 T(0) (.Z

(11) 1 A 4--4 k-u ( 12
A _)_r a~ (5.2)A2  

ks(T) i. XT
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(b) cross-correlator:

( AA 2  k(1 2 )(T)2  F 1
1 1 1 2 -2 -2 u PT (0 )

-- 2 k00(12)() 2  TA- 2 - 2 A 2k.())

1 2

No Smoothing:
(a) auto-correlator: 00

k () u d1) 1 A -4 u 10
A (T) A2 2_ a0 2 2J (5.4)

A k5 (u 2 ( X) 2(dAx)

(b) cross-correlator:

2 2 k (12) (T)
(12) 1 A1 2 -2 -2 u

2(T) - a01 02 (12 ) 2A 2 .A2  k s())

1 2

S u1() dX Lu X) d)

000 00(5 )

1 2-0 -00 J

Presently, (cf. sec. 6), we shall find it convenient, also, to use the relations,0 o 4 A.~'K2 2
A4/A2 ; rA (A 2 /A 1 A 2 ; (5.6a)
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-4 
00  00

r J X) ddX u ()J (S. 6b)
00 -2 . to

,OIL 001/

r (12)= A1 A2 I (S. 6c)00 -- 00 002 2

A A1 A2 _u2 dX u' g dX

-00-0

I
which depend on filter and impulse structure alone.

The various normalized covariance functions appearing in (5.2)-(5. 5)

are specifically

00 2_
k(T) ( 0 

+  uU() dXU (d ' ko) (5. 7)

00 00

with k) (7) U( X +T) u( X) dX u ( X) dX, (5.7a)
u 00 -00

and__ _ _ _ _ _ _ _ _ _ _

k (12) 2  ( U u(X+T) U ( X Xu()d u 2 (X) d0X (5.8)
-00 -00

00002
itk() 27 2

wit ku T) L I X+) 2 X)dx 0 u1 A. dX- u2 X)00 (5. 8a)
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and
00 00

k 2 (T) u S 2 ( X+,r uZ( X) du u41 (X) dX (5.9)
U -CO -0

00 _ _ 001/

U -00 -0 -00 U

I(:3. 10)

Also, we have ks(7), k( 12 )(T), given by (4.9a), the former ons'etting S( 1) =S (2 ).

In all instances, k (7) , k 2(T), etc. vanish as T-->oo, since then u(t) and

u(t+7), etc. do not effectively overlap, cf. (5. 7) et seq. By the Schwartz in-

equality it is easily shown that

I (127 "(12) < ;0< (1(2)(7 ._ _(.1
0 e. k(12 ) . 1; -1 < k sk ,k :S 1; 0 < k ((T) 1. (5.11)

u S 2 ( u 2

(12) 2 (12) 2 2-2.
(However, we observe that k(T) > kU() (since x > x , in general),

u u

so that k( 12 ) (7)2 may be larger than unity.) The factors (P ( T)/X 2)etc.u nnx T T

are filter and impulse "shape factors", depending solely on the detailed structure

of the elementary impulses in the case of no filtering, and principally on the-I
filter in the case of heavy smoothing( as well as on mean pulse durationr,, ).

We note from (A. 1-7) that the mean noise intensity is (for NIor N2 )

00

N. K A1  Ulf1 (X) dX. (5.12)
imp Nl0)imp 0 7 I, 2 0 2
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> , 2 2
Consequently, for fixed noise background N > 0), and fixed aO1 , a0 ,

as y-->0 (i. e. as the noise becomes more "impulsive'), J_(12 )(T) becomes

infinite. On the other hand, if we relax the requirement of fixed noise
.( 1 2 ) ) 2 1

intensity ( > 0) and let y-0, A () also approaches zero, since 2

etc. and then A 1_(T) = 0(y). However, it is the former situation that we

are normally concerned with in the present paper.

I
I
I
I
I
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6. LIMITING CASES OF (S/N)?u

The strong-and weak-signal performance of our correlation receivers

are usually the cases of principal interest. Here we shall consider first

operation against gauss noise backgrounds, and from these results and the

canonical relations, (4. 8), (4. 12) then examine receiver performance

specifically for mixed gauss and impulse noise. In each case we shall

assume either heavy smoothing or no essential smoothing at all (cf. Sec. 5).

A summary and comparison of the principal results is given in section 7.

Before going on to special cases let us re-express (3.8) in more

explicit form for gauss noise backgrounds. We write first for auto-

correlation receivers

2 t2 a 4 k (')2

1 T 0 5er (6. 1)G-auto 0(.
() uo :PT( x ) [B( x) a B(sxn ) (T . x)] dx

-00

where

B(n), x) = kN(T+x)kN(T-x) + k (x); Bl(s)T, x) = Zks(x)kN(X)

+ kS( r+x)kN(T-x) + kS(T-x)kN(T+x). (6. Ia)

The corresponding relations for cross-correlation receivers are
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2s k

= 2 2 ) () 2 0 (XIB(12) ) 7 )+a2 C (12)(xWN -rs T a 01 a 028/. ST(X B(nxn 01,x +0 SN-(2 x

G-cross 2 -00 [

+ G(21) W (12) (T+x -x) +(12) T T+x dx
02 SN 0 1 a 0 2 SN 01 02 SN

(6.2)

with
2)T = k 12 ) (+x) k(12 T -x) + k(1)(x)2k( ) W

(nxn)( = N N )(

C(12) (x =l( (12) W (21) W (2)(x (2) (2).Z

CSN2 ('T+x, T-X) k(12 (7+x) kN(1) (T- X); C (N)(T-X .X k(12 (T-x)kN )(T+x),I
We 4re now ready to consider limiting cases.

6. 1 Gauss Noise-Autocorrelation Receivers

Here we summarize results for weak and strong signal reception, with

heavy smoothing, or none at all. From (6. 1), (6. la) we have
~4

(weak-signals, a0 <<):

2 2 a4 k2 () a4 X 2k ()
T 0 Sk0s T S

N G-auto TO S= TS (6.3a)

SpT(x)B(nxn)(r, x)dx PT(0) S B(nxn)(Tx ) dx heavy smoothing
-00 -00

a0 k 42) a 4

2 I - 2 (6. 3b)
1 + k N ()no smoothing T=7

o29-



For long delays T--oo and. B ( , x)-->k2 (x) in (6.3a) above. Note
(nxn)N
4. .,13

the expected dependence on a0 , indicating "signal suppression". For

strong-signals we get

(strong signals a0 >>):

2 2 2 2 2

ST a0k S (T) S T a 0 kS  (6.4a)
G-auto 000

SPT(x) B (sxn) T B (sxn)(T, x) dx

-O0 heavy

smoothing

T 0 S (6.4b)
I I ~+ ks(T) kN(T) .(.b

J no smoothing

Observe that when T->00 in (6. 4a), then B (sxn)7, x)--; 2ks(x) kN(x). Again we

have the expected "linear" dependence on a as ad--> o, i.e., (S/N) 2 (S/N) n
00 out in

here. The noise is now (relatively) suppressed, and these autocorrelation

receivers operate essentially as linear elements, rather than quadratic devices,

as above (6. 3a, b) for weak signals.

6.2 Gauss Noise - Cross-correlation Receivers:

Let us consider next the more involved situation of cross-correlation

reception. Using (6.2), (6. Za), and paralleling (6. 3a)-(6. 4b), designating

signal No. I as received signal, No. 2 as the locally generated "facsmile"

of No. 1, we find that "best" operation, not unexpectedly, occurs if we set

1 3Ref. 1, Sections (5. 3-4), p. 285, esp.; see also, Sec. 13. 2-1(4),
for a detailed discussion of this phenomenon.
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2 2 2

a0 2-- cc or in practice, at least make a0 1 / a0 2 as small as possible. Then

(6.2) reduces to

(weak signals, a 1 <<1):

I -01

X 2 k 2kx )  () 2

T01 S

= o (6. 5a)

00

T 0 S (6. 5b)

1 0) k S (x)k N )Wx dx

T -oo heavy smoothing

T 01 Sno smoothing

where the only significant term in the noise background is the (sxn) component,

S21)(x), in (6. 2), (6. Za). With heavy smoothing note that this background isCSN

governed by the spectral character (or autovariance function) of the injected

signal, while for no smoothing, performance depends on k( 12 )( 2r) alone2

(apart from a 0 1 , etc.). Observe also that the delay T enters only in the cross-

variance of the signals, which permits us to adjust S so that k 12 )(T) = 1, by

some suitable choice of T. Threshold performance here, nevertheless, is still
2

controlled by the input signal-to-noise ratio a 0 1, but is linear in this ratio,4

as expected of cross-correlation systems, in contrast with the a0 - dependence

of autocorrelation devices in similar threshold experiments. Of course,

deterministic signal structures are also required for cross-correlation, unlike
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the auto-correlation receiver, which may employ stochastic signals.

For strong input signals (6. 2 (, (6. 2a) become, correspondingly,

22
(strong -signals, a01 > > ):

2 ~X 2 a2 k(12) (,r) 2

T 01 S (6.6)

(G-cross 2 [0 2
>> PTl(x) dx a0- k( S(x)kN (x)+ks (x)k N  x)

1 (2) (2) k

a2 ! a0 2

%0 -2 a 12) jT / 0

T 01 I (6.6a)
00

(0) k 1  () (2) ()
2__k__ (2) (x) (x) (x)

_0 a02 heavysmoothing

2a2

1+ a 0 1

a2 -a0 2  no smoothing

where now the only significant contributions to the background noise arise from
th (xn cmpnetsc(12) (1

the (sxn) components CN (x), CSN (x). Note again, the dependence on delay

through k( 2)(T) only and if a02 ----->o, (6. 6b) reduces once more to (6. 5b) as

expected from the characteristic linear behaviors of these cross-correlators.
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6.3 Impulse and Mixed Noise Backgrounds:

With (6. l)-(6. 6) above for (S/N) in the important limiting cases,

in conjunction with (4. 8) we can express (S/N)I2 explicitly for impulse

noise in terms of input signal-to-noise ratio, delay, filter effects, etc.

with the help of (5. 2)-(5. 5) for the impulse factor A( 12 (T) I . The princi-

j pal results, corresponding to the conditions of secs (6. 1), (6. 2) above,

are listed below:
I4

(weak signals, a0 <<1):
00

2 a4  k2 (T) ( B (T x) dx

( u 1 0T S /() (Tx) (6. 7a)

1+ y r uT) 0 B (nxn) (T, x) dx

-0 heavy smoothingII
ao 4 Tks (T) 1 (T)0 S /11 u (6. 7b)

1u u no smoothing

(strong-signals, a > >
00

a 0 2k2 () (0) B (Tx)dx
0 T S 

(sxn)
N 00

)2 I-au1 + 1 r ku(7)2T/ga 0 B (T)("
0 0 sn heavy smoothing

a2 X2 k 2 ()/ 2 11+k(Tk()
0 T

I + (2) - l 1 ) k (TX2 /a? [I +kS(Tlk(T
U no smoothing
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(weak signals, a <<1, aO2  1):
01 02

00

2a 2 (0 2 (2 T k (2 )(x) k 1 (x) dx

NI I-cross 
(6.9a)1 + l(12) k~(12) 2 a 21()

1 + 01 r6 k (T) /a k(-)(x) kNl)(x)dx heavy
/ 0smoothing

a 2 X 2 (12)() 2
01 T (

(12) (6.9b)!~~1 +^-1r(2 ko 2(T) X"Z /a o

G u 2  T 2/ no smoothing

(strong-signals, a >>I, a02 >>1):

aO 2 X2 k(12)(T ) 2 (0) C a k( 1)(x)k (2) (x)+k ( k 1)(4d
(7 Pxk (x d01 T S (xk -o

Is~ 02 I
tNJ ____-00 2

I-cross-1 (12)(12) 2 2 0 (1) (1) (2) (1)
1+' k ( () /a k1$-(x)kN (x)+k5  (x)kN (x dx

(heavy smoothing) (6. 1Oa)

2 X2 (12)()2 2+ a 2/a02
01 T S (6. b)

+Y_ r k 2T X / (1+a 2j/a 2 )-lr(12) k/ ao 0 1'0 no smoothing

For mixed gauss and impulsive noise backgrounds one simply inserts a

factor I - /s as the coefficient of y-I in the denominators of (6. 7a) -(6. 10b).

I
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With the correlation receivers of type (i), (ii), mentioned at the end

of sec. 2, we find that Eqs. (6. 1), (6. Za) become now

2 '-2 2 k) 2
(S/N)X T a01 02 5'

auto-2channel 
00

(x-kcck(2 x + ^ _k(2)(x) A+%'- k ") (x)3 kS (x)] dx

j (6.11)

and

2 2^ 2 (12) 2
2(SIN)?' XT a01 a 0 2 k (T)

(5Ncross 0c
(1) (-( z (-) () (x) ' k (1)(x)k 2 (x)] dx

| ooT(X)kN (xkN Ix N (x +a0ZkN (

(6. 12)

r 2 S N / 2
where a 0 1 = a 0  = SN' and again a 0 1 = S1/N1' a02 

0 1SS2 /jN

These relations apply for impulse noise or mixtures of such noise with a gauss

background, and in fact, for any (stationary) background noise with the same

second-order moments as the reference normal process assumed here. Equations

(6. 3a, b - 6. 5 a, b) are basically unchanged, with obvious modifications in details,

which are left to the reader.
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7. RESULTS AND CONCLUSIONS

Before we summarize the principal results for impulsive noise back-

grounds specifically, some general observations may be made at once from

the foregoing. We see that, independent of the particular noise and signal

statistics:

(1) With heavy smoothing, i. e. , pT(0) = 2Af ->0, corresponding to
e

an indefinitely narrow post-correlation filter, we have (S/N) u----. As

expected, for long enough smoothing periods the output signal-to-noise ratio

can be made indefinitely great (as long as the input signal is "on", of course).

Conversely, with little or no smoothing, (S/N) remains bounded.Out 2
(2) In auto-correlation receivers, weak input signals (a 0 << 1) lead

to (S/N) Zo= 0(a 4), the well-known phenomenon of signal suppression 1 3

out 0
2 2 2while for strong inputs (a 0 >> 1), (S/N) ut, = O(S/N). , and the system

is essentially "linear".

(3) With sufficiently strong injected signals at the receiver, cross-

correlation is always "linear" in the input signal-to-noise ratio, i. e.
2 2(S/N) out = 0(a0 1 ): there is no signal suppression here.

(4) Auto-correlation systems are worse than, or at best, as good

as, cross- correlation systems, in (S/N) performance (for the simple correlator

considered here).

While (1)- (4) have been established earlier for normal noise processes, we

confirm these results now specifically for impulsive noise backgrounds and

mixtures of gauss and impulse noise. When the background noises in the two-

channel correlators (types i, ii included) are independent (at least through the

fourth-order moments), their evaluation of performance based on signal-to-

noise ratios is invariant of the particular statistics of the background noise.

Performance is the same (by this criterion), for background noises having

identical spectra and the same average intensities.
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1

For the correlators principally considered in our present study (involving

statistically dependent background noises) we may draw the following conclu-

sions: In the case of normal noise interference, we observe again that (from

6. 4a, b) vs. (6. 5a, b) vs (6. 6a, b)) with deterministic signals (where ks () 0zS
as T-)oo and ks (7) = 1 for suitable T), (S/N) t of these simple auto-

correlation receivers is always 3 db less than (S/N) u t for the cross-

correlation devices, with no or heavy smoothing, strong or weak input signals.

Next, for impulsive noise backgrounds, and mixtures, * we note that

(5) When the impulse density (7) becomes infinite, (S/N) approaches9I

(S/N)?, as expected, since then the interfering noise becomes normal and

U the impulse factor -(7)- 0, cf. (4. 9), (4. 12).
2 2 (SN2 prahs(/

(6) With strong input signals (a 0 1 , a 21-) S ps0 011Gfor either weak, heavyor intermediate smoothing, and both auto-and cross-

correlation reception. This is easily seen from (4. 9), (4. 12) and the fact

that JA = 0(a ) while (S/N)2 = 0 (a) in the strong signal cases (cf. (3) above.)

(7) Cross-correlation systems can ma.;e A 12 5()-0 and hence

eliminate the degradation due to the impulsive character of the noise, so that

again (S/N)I approaches (S/N)G , for all input signal levels, either by setting
2 2 ~~~ 2fiiebycosn

a 02 -)o with a finite delay (7), or with a02 (>> a0 1 ) finite, by choosing T

infinite. Deterministic signals are necessarily required here for cross-

correlation.

Of particular importance are the results that:

(8) Impulse noise is always worse than, or at best equal to, gauss noise

(of equivalent spectrum and total intensity), i. e. impulse noise always degrades

(S/N) I vis-a-vis (S/N) , the more so as the background becomes more

impulsive, i.e. as -y-> 0 (with N. > 0).
imp

Equivalent in total intensity and spectral shape to a standard gauss noise,
cf. (4. 4) et seq.
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(9) Consequently, auto-correlation systems may or may not be degraded

in (S/N) performance by impulsive noise: With a deterministic nite signal

source (q S < 00) one lets -',) o and thus A( 11)(r)_-O, because ku(,r)Z,

k 2(r)- 0 as r----)o, cf (6. 7a-6. 8b), with a resulting equivalent performance
2U

vis-a-vis a pmey normal background). However, if the signals are non-

deterministic, e. g. noise processes themselves, as is frequently the case in

j present acoustic applications, then /I)(T) 0 for all finite 7-, and one has

thus possibly large degradations of (S/N) 2 vis-a>-vis (SIN) 2
I 2 *

a 0 )c0, cf (6), but because of heavy smoothing (Af - 0, cf (1)), the degradation

due to impulse noise becomes relatively infinite, since then

(SIN) I = [(1-)-lZ)]-I, 1> j 0, as (S2N) d oo, cf. (4. 12).

The principal conclusions to be drawn from the foregoing depend heavily

upon whether deterministic or stochastic signals are employed. In many

important applications passive systems must be used for signal detection and

estimation, and then in this respect reception is at the mercy of the signal

source. For example, if the emitted signal belongs to a random process,

e. g., is a normal noise or impulsive noise wave, then only auto-correlation

reception is possible, usually with zero or small delays (7) so that ks ()

(or the numerators of (SIN), (SIN) are maximized. With impulsive
G 1 2

noise backgrounds considerable degradation of (S/N) out may be expected,

cf.(8), (9), particularly for strong output' Ssignals and high impulsiveness

Here T must be finite, otherwise kS(7) would also vanish: there would
effectively be no signal, either, cf. the numerators in (6. 1)-(6. 10) above.

2 2
The input signal-to-noise ratioQ(a 0 , a~l etc.) may be quite small, but

the effective output ratio is required to be at least moderately large 0(0.0 db
or more) for effective detection. The enhancement of (S/N) is, of course, to
be achieved by the correlation and smoothing processes discussed in the previous
sections. - 37 -



(small yand ., large At( 1 1 ) cf. Figure 2 and (10) above. This effect

is less pronounced for moderate and weak outputs, whenA(1 1) is very large.

A brief table of (S/N) I , based on Eq. (4. 9) illustrates these remarks:

S 11) 10- 1  100 101 102

.N -G.----.

-3db -3. 2db -4.8 db -10.8 db -20. 1 db

0 -0.4 -3.30 -10.4 -20.0-

3 2.2 -1.8 -10.2 -20.0

10 7.0 -0.4 -10.0+ -20.0

_0 9.6 0.0- -10.0 -0.0

Table 7.1 (S/ N)? for various _(lland (S/N)2

I
For instance, with moderately impulsive noise ((1) = 10) and somewhat

weak output signal, (S/N)2 = 0. 0 db, the degradation is - (0. 0 - 10. 4) = 10. 4 db,

with much greater (relative) degradations for stronger outputs, eg. (S/N)G = ZO. Odb.

These figures are moderated for mixtures of gauss and impulse noise, becoming

less significant as the impulsive component is decreased relative to the normal

one ( M41).

Whenever coherent operation is possible (in active systems only), then

cross-correlation reception is naturally preferred, and the effects of the impul-

sive noise may be entirely suppressed, even for comparatively weak inputs

(of. (7) ). Heavy post-correlation smoothing is also desired when possible, to

enhance (S/N) , or equivalently, to lower the input signal level that can be
Out'

perceived after detection. Moreover, from the point of view of received signal

energy alone, all signals of equal energy are under the present criterion equi-

valent - no distinctions need be made in this respect between stochastic and
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deterministic signal processes, since kS(T), kS
1 2 )CT) have always maximal

value(s) of unity, for proper choice of delay. The effect on the background

noise, however, is not the same in the strong signal cases, because of the

(sxn) noise products, cf. Eqs. (6. l)-(6. la).

In practice, we cannot expect to attain infihite delays or infinitely

strong local signals (a0 .o0), so that these ideal limiting conditions are

not reached, but they can usually be well enough approximated for the

analogies to be applicable. Measures of performance based on signal-to-

noise ratio are, of course, incomplete, as explained in Section 1, so that

interpretations employing the results of the present study are similarly

limited. However, they are quantitatively useful within their proper frame-

work and qualitatively indicative of performance within the larger statistical

picture, e. g., enhancing the output signal-to-noise ratio acts to reduce the

probabilities of decision error, and so on. The present treatment has pur-

posely been kept in as canonical a form as possible in view of the many system

parameters and their combinations. Also, from the general results here (cf.

Sec. 6) the many special relations of concern to more detailed and local interests

can be readily obtained. A later study will consider other types of non-normal

noise backgrounds, and extend receiver structure to include multiple element

arrays.
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APPENDIX I

POISSON IMPULSE NOISE

For the specific applications of the present study we extend the results
12

of earlier work for an impulsive noise of the Poisson type, characterized

by arbitrary numbers of independent impulses occurring randomly in time, in

order to obtain the desired second-and fourth-order moments needed in the

theory. The required generalization is that of Eq. (11. 73a), ref. 1, for the
joint characteristic function of N 3 N3, N 32 , N4 (with N1

= N(: etc.

and is found to be

F ~ ~ ~ ~ 0 4 Zi t4 x y dl. . o2

i U1 (z 4 .) +ia 2 CO. 2  2 U()

3,4 /3, 4

(A. 1-1)

where

y (average no. of pulses/sec.) ' (average duration, "T, of a typical

impulse) impulse "density";

Z = (tt- t (A. 1-la)

u l , u2  basic pulse shapes for N N(2 ) "

T I ,  , a2 , I , 4, = possible random parameters associated with the basic

impulses.

I
I- 40 -



(It is assumed that, in general, the mechanism generating N 1 ) and N (2 ) is a

common one, so that N ( 1 ) and N ( 2 ) are correlated. This implies a suitable

statistical relationship between a 1u 1 cos 1 and a2 u2 cos 4,2, of course. )

The desired moments are found in the usual way by differentiating the

characteristic function (A. 1-1). We have in the general situation whenN,

N iN N k X0

NO)(t )N(2) a1 F

N t1 N ( 4 ) -1 a~ 4  4
t Il=...* = 0

I -= <A1  5 u1(To+ tpO1 ) u2(t4+ 4 ;6 2)do>
-00

00 0

-00 -00

where A, = a 1 cos 1I AZ = a 2 cos 0., and 0 1 , 0 refer to any other possibly

random parameters of the basic waveforms u 1 , u 2 . The other second moments

follows in similar fashion, viz.:

NO)(tl)N (t 2) a 1 F

=0

00
2 K (t 1 + el) ut +r 0 ;l) d'ro)* u' 8 A 1  t u I  T u0I (t 2 + o.I '

-00

00 2

+ ('y )2 <, ' A 1 ul (tl + r0 ; e) etc. (A. 1-3)

-00
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The general fourth-order moment is found to be

4

I = N(I1 ) NO) N(NZ)NZ = 4 F 44 1 2 3 4. a 4  4

=0

00

'Y . (A 2A 2 u u u u4  dr0 + 'Y 2 0 2 j<AlA~ 2 uu> dT 0 / ,AluldTo>

2 Io n
+ <Si i 3u 4 d 0 / 1~ ~ 2 > d 0  1 ~(~ 2u1 2 4 > d 0 ( A 2 3dT 0 >

I <( A2A u u U dTO> <I Au> dr I + 'Y2 02 (A 2u u dr <(A 1U Iu2> dr0

j+ < (A 1A 2 u2 u4 > dT0  ' <AIA 2u1u 3 > dT0 + < <A IA2 u1 u4 ) dT0 5<AA I2 2u3)dTO)

+ , 3  A 2~ <Au u4 dTO <A uZdTO A <AuldT

+ 5<A IA 2 u2 u4> dT 0  A < 2 u3 > d'r0  < <A IuI > dT0

+ S <A 1A 2 u2 u3 > dTO 5 <A 1u 1) dT0  < <A 2u4 ) d7-0
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I

I+(AlAulu4 > dr 0  <A2u 3 > d-r0  < <A 1u2  dr 0 >

I
+ <A5 (A2u1u 3)dT 0 < Alu 2 )dT 0 KAzu4 >dro

I + < A' ulu, > dT0 S A~ 3 d 0  A K~u) dT0 3I

g+ Y4 04{ <AI u 1> d 0 S <A 2u 2> dr 0 <A3u3 dTo S <A4 u4 >dr O

i (A. 1-4)

where now our abbreviated notation is u= ul(t I + 0 e 1) , u2 = ul(t2 + r 0-, 1 );

u 3 = u 2 (t 3 + T01 2, u 4 = U2 (t 4 + T 0 ). For the important: case considered

here specifically, the first and third moments of N vanish, e. g. , N. = 0;

NiNj Nk N 0, so that 14 reduces at once to the much simpler form

I4 = Y C<A2 A2 UUUU4 dT0 + -Y 2A 2u 3u0 dT A UU 2  d7o

+ 5<AIA uu> dTr0  A <A Au u dTr +5 KA Au U>d~oj<AAu u3)d&~

(A. 1-5)
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Accordingly, with this assumption of the vanishing of the odd-order moments of

N, we have with the help of (A. 1-5) the following expression for [ A41 (7, x)N-

K(1 2 )() 2 ] imp' cf. (3. 10), in these stationary cases:

[A ( 12 ) (,r, x)N KN (T) ]imp

= Y 2 A 2 < Au (T +r) u1 (T0 +T + x) u (,r ) u (,r + x))'d70
oo*o

q2 1- 2 1 0 2020q' J <4A1AU( 0 +u( 0 +,~ dx7u2( 0 ) u(r 0 ) +x)(d70I2
-0-

0 0 00

+ xT ) u.o +ux) >+o +d x) (T)+ ) > dT

~7 2  1(0 0  J 1 2 0 2 0

-00 -00

(A. 1-6)

Since

00
'Y A 2 u( T+)dO Kl x

S' A1Ul(I0)U1lI0 + x ) d1"0  
- N(x) imp

-00

00

A 2 S (2) W
S 2 2202 0 N imp

-00

00(A. -7)

AA ' (T+(10 -x)u (Tr) dTr0 (12)(r-x)
A1A2  ( 2 0 dN imp

-00

00

, A2 1(0 + t +x)u (7-0 ) dK0 KN T+x) ) i
1 2 0 20 Nimp

-00
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and

00

' + r) Uu( 0 + (TT0 +T x) u (r 0 ) u 2 (, 0 +x) d7 0  I I 1 2 (rx), (A. 1-8)

-00

it follows that

12) 12) 21
A( (T, x), K(N (T4 N N imp

= I ( ~ (1) (2) (12) (~12~) , (.1912'r + N() + (-x) N ) imp(!

which is just (4. 3), (4. 3a).

!

*8
Eq. (A. 1-8) is the generalization of Eq. (66) of Magness. 8
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APPENDIX II

Proof that A( 12 )(T) I 
> 0

Essential to our explicit comparisons of receiver performance, and to

the general conclusions of Section 7, is the requirement that A.(12)(-) (4. 9),

be positive (or zero). We demonstrate this below.

From (4. 9) we may write

00 00

A(( 2)i=B 2(.T) PT(x)dx U(k + -) u (k +,r+x) u2( )u 2 (X +x) dX , (A. 2-1)

-00 -00

so that to establish that -( 12 ) M 0 we must show that I 1 (') ( 0 0i (")

2 "PTlX)dx, cf. 4. 3a), the coefficient of B () in (A. 2-1), is positive

or zero. We start with the Fourier transforms of the basic impulses

00 00

Ul(t) S S(iw) eiwt df; u2 (t) ,S 2 (iw)eiwtdf; w = Zrf (A. 2-2)

-00 -00

and write

00 00 00

Ii('r) = W dx ( d , ... S (iw) e (it )diW(X+X+T)

112(7 .) j'TS -
-00 -00 -00

iW"X iw"'()+4S2(iw",) e • S(iw,,,)e +Xdf ..df"' (A. 2-3)
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0

Using exp i(o +Wt +t" +W."') X dX = 6(f"' +f" +f) and making the trans-

-00
A

formations w" + o = o, U' = -w' we may regroup and rewrite (A. 2-3) finally as

00

(1 2 (T) = X) dx

-00

00A

.[S 1 (WS(iLA I [Sl(i')S 2 (i6-i6t)e ] df dfdf (A. 2-4)

I
Next, we define

tN00 iiT

G 1 2 (i -T) (i)S 2 (i - iw) eiT df. (A. 2-5)

-00

'1 Accordingly, (A. 2-4) becomes

00 00

12 () pT(x)dx G ~ 12 (iO:T) G12 (i4 T)eC df (A. 2-6

-00 -00

But we have

00

e-iW Ax A2
PT( x ) e YT iw) (A. 2-7)

-00

A related result is achieved through a somewhat different approach by
Magness, ref. 8, III, and Eq. (68) therein.
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from pp. 163, 682 (Eq. 16. 96), ref. 1, where Y is the system function of the
T

truncated smoothing filter hT # cf. (3.7a-c), so that 12(r) may be expressed as

00

(T)(GO) 12 2 ~ df2
12(  2 G12(i ;2 df Z 0, (A. 2-8)

which establishes our statement above; 112 (T) vanishes only if G12 vanishes,

I all f.

Note that (A. 2-5) can be represented equivalently by

00 00

12 (ii; T) = u2 (t-T)e '(-)dt = tTU2M -it, (A. 2-9)12j u()u 1(t+Tu 2(tle' dt,

so that if T-> + oo, then G I--->0, inasmuch as u will vanish when u is different
from zero and vice-versa: there is then no essential cross-correlation between

- iWT ( 12)(7imp,

ul(t+T) and u2 (t) e . With the help of (A. 2-8) we can write _ (T)

(4. 9) alternatively as

2 2
A(12)(T)m- a-2 A0-2 k(12)(T)-2 AI A2A~2~(Timpa 01a 0 2 ks(

2 2

Y T GO G 12 (i w;7) 2 df
{ 0YT( 0) 2 2 > .0, (A. 2-10)

I 0 G1 1 (O,0) J
where T+

YT(iw) = hT(T) d-i'T d-T. (A. 2-10a)

See Footnote, p. 47.
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